

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/43 October/November 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

Ρ	age 2	2 Mark Scheme Cambridge International AS/A Level – October/November 2016	Syllabus 9702	Pape 43	ər
1	(a)	gravitational force provides/is the centripetal force	VI V2	B1]
		$GMm/r^2 = mv^2/r$ or $GMm/r^2 = mr\omega^2$ and $v = 2\pi r/T$ or $\omega = 2\pi/T$		M1	
		with algebra to $T^2 = 4\pi^2 r^3 / GM$		A1	[3]
		or			
		acceleration due to gravity is the centripetal acceleration		(B1)	
		$GM/r^2 = v^2/r$ or $GM/r^2 = r\omega^2$ and $v = 2\pi r/T$ or $\omega = 2\pi/T$		(M1)	
		with algebra to $T^2 = 4\pi^2 r^3 / GM$		(A1)	
	(b)	(i) equatorial orbit/orbits (directly) above the equator		B1	
		from west to east		B1	[2]
		(ii) $(24 \times 3600)^2 = 4\pi^2 r^3 / (6.67 \times 10^{-11} \times 6.0 \times 10^{24})$		C1	
		$r^3 = 7.57 \times 10^{22}$			
		$r = 4.2 \times 10^7 \mathrm{m}$		A1	[2]
	(c)	$(T/24)^2 = \{(2.64 \times 10^7)/(4.23 \times 10^7)\}^3$ = 0.243		B1	
		<i>T</i> = 12 hours		A1	[2]
		or			
		$k (= T^2/r^3) = 24^2/(4.23 \times 10^7)^3$ = 7.61 × 10 ⁻²¹		(B1)	
		$T^2 (= kr^3) = 7.61 \times 10^{-21} \times (2.64 \times 10^7)^3$ = 140			
		T = 12 hours		(A1)	
2	(a)	(i) $p \propto T$ or pV/T = constant or $pV = nRT$		C1	
		<i>T</i> (= 5 × 300 =) 1500 K		A1	[2]
		(ii) $pV = nRT$			
		$1.0 \times 10^5 \times 4.0 \times 10^{-4} = n \times 8.31 \times 300$			
		or $5.0 \times 10^5 \times 4.0 \times 10^{-4} = n \times 8.31 \times 1500$		C1	
		<i>n</i> = 0.016 mol		A1	[2]
		© UCLES 2016			

Page 3				Mark Scheme	Syllabus	Pap	
			Cam	bridge International AS/A Level – October/November 2016	9702	43	
	(b)	(i)	1.	heating/thermal energy supplied		B1	
			2.	work done on/to system		B1	[2]
		(ii)	1.	240 J		A1	
			2.	same value as given in 1. (= 240 J) and zero given for 3.		A1	
			3.	zero		A1	[3]
3	(a)	2k/	<i>m</i> =	ω^2		M1	
		ω=	2π f			M1	
		(2 >	< 64 <i>)</i>	(0.810) = $(2\pi \times f)^2$ leading to $f = 2.0$ Hz		A1	[3]
	(b)		= <i>@</i> X($o or v_0 = 2\pi f x_0$			
		or v =	<i>ω</i> (x ₀	$(x^2 - x^2)^{1/2}$ and $x = 0$		C1	
		v ₀ :	= 2π	\times 2.0 \times 1.6 \times 10 ⁻²			
		:	= 0.2	20 m s ⁻¹		A1	[2]
	(c)			cy: reduced/decreased Im speed: reduced/decreased		B1 B1	[2]
4	(a)	(i)		se/distortion is removed (from the signal) (original) signal is reformed/reproduced/recovered/restored		B1 B1	[2]
			or				
				nal detected above/below a threshold creates new signal Is and 0s		(B1) (B1)	
		(ii)	dis	se is superposed on the (displacement of the) signal/cannot be tinguished			
				alogue/signal is continuous (so cannot be regenerated)			
			or ana	alogue/signal is not discrete (so cannot be regenerated)		B1	
			noi	se is amplified with the signal		B1	[2]

Pa	age 4		Mark Scheme Cambridge International AS/A Level – October/November 2016	Syllabus 9702	Pape 43	
	(b)	•		5702	43	
	(0)	(1)	gain/dB = $10 \log (P_2/P_1)$			
			$32 = 10 \log [P_{\text{MIN}} / (0.38 \times 10^{-6})]$ or		04	
			$-32 = 10 \lg (0.38 \times 10^{-6} / P_{\rm MIN})$		C1	
			$P_{\rm MIN} = 6.0 \times 10^{-4} {\rm W}$		A1	[2]
		(ii)	attenuation = $10 \log [(9.5 \times 10^{-3})/(6.02 \times 10^{-4})]$		C1	
			= 12 dB			
			attenuation per unit length (= 12/58) = 0.21 dB km ⁻¹		A1	[2]
5	(a)	in a	an electric field, charges (in a conductor) would move		B1	
			movement of charge so zero field strength			
		or cha	arge moves until $F = 0 / E = 0$		B1	[2]
		or				
			arges in metal do not move		(B1)	
		no	(resultant) force on charges so no (electric) field		(B1)	
	(b)	at F	P, $E_{\rm A} = (3.0 \times 10^{-12}) / [4\pi \epsilon_0 (5.0 \times 10^{-2})^2]$ (= 10.79 N C ⁻¹)		M1	
		at F	P, $E_{\rm B} = (12 \times 10^{-12}) / [4\pi \varepsilon_0 (10 \times 10^{-2})^2]$ (= 10.79 N C ⁻¹)		M1	
		or				
			$0 \times 10^{-12})/[4\pi \epsilon_0 (5.0 \times 10^{-2})^2] - (12 \times 10^{-12})/[4\pi \epsilon_0 (10 \times 10^{-2})^2] = 0$			
		or (3.0	$0 \times 10^{-12}) / [4\pi \epsilon_0 (5.0 \times 10^{-2})^2] = (12 \times 10^{-12}) / [4\pi \epsilon_0 (10 \times 10^{-2})^2]$		(M2)	
		fiel	ds due to charged spheres are (equal and) <u>opposite in direction</u> , so <i>E</i>	= 0	A1	[3]
	(c)	pot	ential = $8.99 \times 10^9 \{(3.0 \times 10^{-12})/(5.0 \times 10^{-2}) + (12 \times 10^{-12})/(10 \times 10^{-12})\}$	-2)}	C1	
			= 1.62 V		A1	[2]
	(4)	1/	$a^2 - a^{1/2}$			
	(a)		$nv^2 = qV$		04	
			$= \frac{1}{2} \times 107 \times 1.66 \times 10^{-27} \times v^2$		C1	
		•	$= 47 \times 1.60 \times 10^{-19} \times 1.62$		C1	
		-	$= 1.37 \times 10^{8}$			
		V	$= 1.2 \times 10^4 \mathrm{ms^{-1}}$		A1	[3]

Page	e 5 Mark Scheme Syllab		Syllabus	Paper	
v		Cambridge International AS/A Level – October/November 2016	9702	43	
6 (a)	the	erence to input (voltage) and output (voltage) re is no time delay between change in input and change in output		B1 B1	[2]
	or				
		erence to rate at which output voltage changes nite rate of change (of output voltage)		(B1) (B1)	
(b)	(i)	2.00/3.00 = 1.50/R		C1	
		or			
		$V_{+} = (3.00 \times 4.5)/(2.00 + 3.00) = 2.7$ 2.7 = 4.5 × $R/(R + 1.50)$		(C1)	
		resistance = $2.25 \mathrm{k}\Omega$		A1	[2]
	(ii)	1. correct symbol for LED two LEDs connected with opposite polarities between V_{OUT} and	earth	M1 A1	[2]
		2. below 24 °C, $R_T > 1.5 \text{ k}\Omega$ or resistance of thermistor increases/h	nigh	B1	
		$V_{-} < V_{+}$ or V_{-} decreases/low (must not contradict initial stateme	nt)	M1	
		V_{OUT} is positive/+5 (V) and LED labelled as 'pointing' from V_{OUT}	to earth	A1	[3]
7 (a)	reg	ion (of space) where a force is experienced by a particle		B1	[1]
(b)	(i)	gravitational		B1	
	(ii)	gravitational and electric		B1	
	(iii)	gravitational, electric and magnetic		B1	[3]
(c)	(i)	force (always) normal to direction of motion		M1	
		(magnitude of) force constant			
		<i>or</i> speed is constant/kinetic energy is constant		M1	
		magnetic force provides/is the centripetal force		A1	[3]
	(ii)	$mv^2/r = Bqv$		B1	
		momentum or p or $mv = Bqr$		B1	[2]

Ρ	Page 6	Mark Scheme	Syllabus	Pape	
	Cambridge Interr	national AS/A Level – October/November 2016	9702	43	
8	strong <u>uniform</u> magnetic	field		B1	
	nuclei precess/rotate abo	ut field (direction)		(1)	
	radio-frequency pulse (ap	oplied)		B1	
	R.F. or pulse is at Larmo	r frequency/frequency of precession		(1)	
	causes resonance/excita	tion (of nuclei)/nuclei absorb energy		B1	
	on relaxation/de-excitatio	n, nuclei emit r.f./pulse		B1	
	(emitted) r.f./pulse detect	ed and processed		(1)	
	non-uniform magnetic fie	ld		B1	
	allows position of nuclei t	o be located		B1	
	allows for location of dete	ection to be changed/different slices to be studied		(1)	
	any two of the points mai	rked (1)		B2	[8]
9	(a) (induced) e.m.f. prop of change of (magne			M1 A1	[2]
	(b) flux linkage = BAN				
	= π × 10	$10^{-3} \times 2.8 \times \pi \times (1.6 \times 10^{-2})^2 \times 85 = 6.0 \times 10^{-4} \text{ Wb}$		B1	[1]
	(c) e.m.f. = $\Delta N \Phi / \Delta t$				
	= (6.0 × 10 ⁻⁴ ×	2)/0.30		C1	
	= 4.0 mV			A1	[2]
				_ /	
	(d) sketch: $E = 0$ for $t =$	$0 \rightarrow 0.3 \text{s}, 0.6 \text{s} \rightarrow 1.0 \text{s}, 1.6 \text{s} \rightarrow 2.0 \text{s}$		B1	
	<i>E</i> = 4 mV fo	r $t = 0.3 \text{ s} \rightarrow 0.6 \text{ s}$ (either polarity)		B1	
	<i>E</i> = 2 mV fo	$r t = 1.0 s \rightarrow 1.6 s$		B1	
	with opposit	e polarity		B1	[4]

Pa	age 7		llabus	Paper	
	-		702	43	
10	(a)	electromagnetic radiation/photons incident on a surface		B1	
		causes emission of electrons (from the surface)		B1	[2]
	(b)	$E = hc / \lambda$			
		= $(6.63 \times 10^{-34} \times 3.00 \times 10^8) / (436 \times 10^{-9})$		C1	
		= $4.56 \times 10^{-19} \text{ J} (4.6 \times 10^{-19} \text{ J})$		A1	[2]
	(c)	(i) $\Phi = hc/\lambda_0$			
		$\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (1.4 \times 1.60 \times 10^{-19})$		C1	
		= 890 nm		A1	[2]
		(ii) $\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (4.5 \times 1.60 \times 10^{-19})$			
		= 280 nm		A1	[1]
	(d)	caesium: wavelength of photon less than threshold wavelength (or v.v.)			
		or			
		$\lambda_0 = 890 \mathrm{nm} > 436 \mathrm{nm}$		A1	
		so yes		AI	
		tungsten: wavelength of photon greater than threshold wavelength (or v.v.) or			
		$\lambda_0 = 280 \text{nm} < 436 \text{nm}$ so no		A1	[2]
11	in n	netal, conduction band overlaps valence band/no forbidden band/no band ga	ар	B1	
	as t	emperature rises, no increase in number of free electrons/charge carriers		B1	
	as t	emperature rises, lattice vibrations increase		M1	
	(latt	ice) vibrations restrict movement of electrons/charge carriers		M1	
	(cui	rent decreases) so resistance increases		A1	[5]

Page 8			Mark Scheme	Syllabus	Раре	ər
			Cambridge International AS/A Level – October/November 2016	9702	43	
12	(a)	(i)	time for number of atoms/nuclei or activity to be reduced to one hal	f	M1	
			reference to (number of) original nuclide/single isotope <i>or</i>			
			reference to half of original value/initial activity		A1	[2]
		(ii)	$A = A_0 \exp(-\lambda t)$ and either $t = t_{\frac{1}{2}}, A = \frac{1}{2}A_0$ or $\frac{1}{2}A_0 = A_0 \exp(-\lambda t_{\frac{1}{2}})$		M1	
			so $\ln 2 = \lambda t_{\frac{1}{2}}$ (and $\ln 2 = 0.693$), hence $0.693 = \lambda t_{\frac{1}{2}}$		A1	[2]
	(b)	A	$= \lambda N$			
		Ν	= 200/(2.1 × 10 ⁻⁶)		C1	
			$= 9.52 \times 10^{7}$		C1	
			ass = $(9.52 \times 10^7 \times 222 \times 10^{-3})/(6.02 \times 10^{23})$			
		or ma	$ass = 9.52 \times 10^7 \times 222 \times 1.66 \times 10^{-27}$		C1	
			$= 3.5 \times 10^{-17} \text{kg}$		A1	[4]